Pseudo-Riemannian spectral triples and the harmonic oscillator
نویسندگان
چکیده
منابع مشابه
Spectral triples of weighted groups
We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.
متن کاملRemovability of singularities of harmonic maps into pseudo-riemannian manifolds
We consider harmonic maps into pseudo-Riemannian manifolds. We show the removability of isolated singularities for continuous maps, i.e. that any continuous map from an open subset of R into a pseudoRiemannian manifold which is two times continuously differentiable and harmonic everywhere outside an isolated point is actually smooth harmonic everywhere. Introduction Given n ∈ N and two nonnegat...
متن کاملSpectral Asymptotics of the Non-self-adjoint Harmonic Oscillator
We obtain an explicit asymptotic formula for the norms of the spectral projections of the non-self-adjoint harmonic oscillator H. We deduce that the spectral expansion of e−Ht is norm convergent if and only if t is greater than a certain explicit positive constant.
متن کاملSuper algebra and Harmonic Oscillator in Anti de Sitter space
The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...
متن کاملSpectral asymptotics of harmonic oscillator perturbed by bounded potential
Consider the operator T = − d dx2 + x2 + q(x) in L2(R), where real functions q, q′ and ∫ x 0 q(s) ds are bounded. In particular, q is periodic or almost periodic. The spectrum of T is purely discrete and consists of the simple eigenvalues {μn}n=0, μn < μn+1. We determine their asymptotics μn = (2n+1)+(2π) −1 ∫ π −π q( √ 2n + 1 sin θ) dθ+O(n−1/3).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2013
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2013.04.011